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Abstract

This paper describes a finger gesture recognition system
based on an active tracking mechanism. The simplicity of
this tracking system is such that it would be possible to in-
tegrate the whole system on a chip, making it an interest-
ing input interface for portable computing devices. In this
context, recognition of gestural characters allows informa-
tion to be input in a natural way. The recognition of three
dimensional gestures is also studied, opening the way to a
more complex interaction mode and to other kinds of appli-
cations.

1. Introduction

Input of information is becoming a challenging task as
portable electronic devices become smaller. Alternatives to
the keyboard have been proposed for portable devices such
as personal digital assistants (PDAs). For example, input of
data is often done through a touch sensitive screen using a
prescribed input method, such as Graffitir. The next step is
to remove the need for an input device such as a stylus, thus
allowing input using only the fingers [17]. This paper pro-
poses a system whose main purpose is to provide a user with
a natural way of interacting with a portable device or a com-
puter through the recognition of finger gestures. This system
can form part of a so-called Perceptual User Interface (PUI
[16]), whereby the gestures would be one mode of interac-
tion, along with speech, for example. The system could be
used for Virtual Reality or Augmented Reality [10, 14] sys-
tems. The kind of gestures that should be considered will
vary depending on the applications.

First, in this paper, a system that solves the problem of
actively tracking gestures is described. This active track-
ing system, described in detail in [7], allows us to directly
obtain the position of a tracked finger. The system, which
is depicted in Fig.1, is based on a wide-angle photodetec-
tor and a collimated laser beam generated by a laser diode
and steered by means of a two micro-mirrors. It is interest-

ing to note that this tracking system does not require the
user to hold any special device (such as gloves which are
commonly used for such systems [15]). Moreover, this sys-
tem offers the possibility of tracking 3D gestures. Next, this

Figure 1. The proposed active tracking sys-
tem as a human-machine interface for hand-
held devices.

simple active tracking system is used as an input method of
data, that is characters, similarly to the use of a stylus on
some PDAs. Gesture Recognition (GR) itself is performed
using Hidden Markov Models (HMMs) as described in [8].
Several problems arise and solutions are proposed, includ-
ing other ways to perform the GR.

Finally, other applications of the described system are
proposed, some of them using the ability to track 3D ges-
tures.

This paper is organized as follows. Section 2 gives a brief
description of the gesture tracking system with a study of
its ability to track 3D gestures. Section 3 focuses on ges-
tural character recognition itself using HMMs. This section
discusses solutions to the problems encountered in GR and
proposes other methods. In the conclusion section, the most
relevant results are summarized and future research direc-
tions outlined.



2. Active Tracking

2.1. Two Dimensional Tracking

Tracking is based on the analysis of a temporal sig-
nal corresponding to the amount of backscattered light
measured during a lasersaccade, i.e. a rapid laser scan
generated in the neighborhood of the tracked object (see
Fig.2). While tracked, the object continuously backscat-
ters some laser light (Fig.2.a). When the object moves, the
backscattered signal is lost and tracking fails (Fig.2.b). The
system then generates a local scanning saccade (Fig.2.c),
and re-centers the laser at the new backscattering position
(Fig.2.d). If this process is repeated rapidly enough, the ob-
ject will always be within the reach of a small saccade.

Figure 2. Principle of the non-imaging track-
ing system based on a laser saccade.

A circular saccade was selected because this trajectory
is easy to generate and has good symmetry properties that
translate into reduced algorithm complexity. A detailed de-
scription of the tracking algorithm used is given in [7].

The performance of the system was evaluated by mea-
suring the maximum speed an object could move without
being lost by the tracking system. The tracked object was a
circular piece of white paper,Robj = 9 mm in radius, trac-
ing a circular trajectory at different uniform speeds. The dis-
tance between the mirrors and the object remained constant.

It is important to note that the maximum speed experi-
mentally obtained was about 2.75 m/s for a tracked object
whose size is approximately the same as a finger tip (usu-
ally between 1.5 cm and 2 cm in diameter). This speed value
is higher than the typical speed of a finger performing ges-
tures. Therefore, the present system is able to easily track a
finger tip.

Figure 3. Example of the tracking of a finger
gesture (character C).

An illustration of the tracking algorithm appears in Fig.3
which shows the tracking of a gesture performed by a user
with one of his fingers. Only the backscattered laser light is
shown.

All the gestures are expected to be performed at an ap-
proximately constant distance from the mirrors. By measur-
ing the azimuth and elevation angles of the steering mir-
rors, the two dimensional position of the tracked object can
be computed.

2.2. Three Dimensional Tracking

To determine the azimuth and elevation of the tracked
finger, it is necessary to have enough contrast between the
backscattered signal and the background illumination. Also,
the absolute value of the backscattered intensity can be used
to estimate the distance from the tracking system to the
finger, without resorting to complex telemetric techniques
such as triangulation or time-of-flight measurements (this is
possible because the working distance in the target applica-
tion remains relatively small - on the order of tens of cen-
timeters). The maximum working distance and the achiev-
able precision of the estimated depth, are both dependent on
the noise characteristics of the backscattered signal as well
as the illumination background. Since synchronous detec-
tion is not implemented in our prototype, dark room con-
ditions were necessary to minimize background noise. The
background noise intensity,IB , was assumed to be a Gaus-
sian distribution with a measured mean〈IB〉 = 7 nW and
varianceσ2

IB
= 0.1 nW. The characteristics of the backscat-

tered signal are modeled here as a simple ”coplanar” con-
figuration, represented in Fig.4. The intensity of the laser
source was fixed toIL = 370 µW (after reflection at the
galvano-mirrors). We verified that the laser light could be,
for our purposes, considered to be isotropically backscat-
tered by the skin on a finger-tip. However, the spatial char-
acteristics of the backscattered light (speckle) vary consid-
erably depending on the micrometer-scale position of the



Figure 4. Relevant geometrical parameters
of the setup. S: active surface of the pho-
todetector. PD: Photo-Detector. MM: Micro-
Mirrors. DL: Diode Laser.

incident point on such a microscopically wrinkled surface.
This accounts for a significant fluctuation of the amount of
light integrated by a distant, small photodetector with an ac-
tive areaS = 25 mm2. The random variableR will model
the object’s reflectivity. From the geometrical configuration,
it follows that the intensity of the signal backscattered by
the objecyIO as a function of the depthz is approximated
by equation 1.

IO(z) =
R.IL.S. cosβ

(a2 + z2)
+ IB (1)

(This simplified equation assumes that the finger-tip
stays somewhere close to the photodetector-source me-
dian plane.) Because in our configuration the pho-
todetector is such thatβ is small, the approximation
cos β ≈ 1 also holds. Thus, the mean intensity of
the backscattered signal as a function of the depth is
〈IO(z)〉 = IL.S

(a2+z2) 〈R〉 + 〈IB〉, and its standard de-

viation is just σIO
(z) = IL.S

(a2+z2)σR + σIB
, since the

background noise and the reflectivity noise are indepen-
dent phenomena. It was verified that the proposed model
agrees well with the experimental results.

2.2.1. Maximum Working Distance The binary signal
obtained after thresholding the photodetected signal should
be as meaningful as possible: a measured intensity of mag-
nitude〈IO(z)〉 most probably indicates that the laser beam
is actually hitting the objet’s surface, while a signal of mag-
nitude〈IB〉 most probably indicates a miss. In our present
algorithm, the binarisation thresholdIth(z) is fixed in such
a way that the probability of an erroneous result is indepen-
dent of the actual situation. In other words, the binary sig-
nal is modelled as a binary symmetric noisy channel. This
means that the tails of the noise distributions ofIO(z) and

IB are equal atIth(z). Assuming Gaussian noise, as de-
scribed above, the depth-dependent ”symmetric” threshold
is therefore given by equation 2.

Ith(z) =
∣∣∣∣
〈IO(z)〉 .σIB

+ 〈IB〉 .σIO
(z)

σIB
+ σIO

(z)

∣∣∣∣ (2)

(assuming that〈IB〉 < Ith(z) < 〈IO(z)〉). In particular, if
both variances are negligible or equal, then the symmetric
threshold is, as expected, equidistant from the mean back-
ground and to the mean backscattered intensity.

The confidenceConf of the estimation resulting from
the use of this threshold is equal to the cumulative distri-
butions up toIth(z), of any of these noisy variables and is
given by equation 3.

Conf(z) =
1
2

{
1 + erf

(
Ith(z)− 〈IB〉

σIB

√
2

)}
(3)

The robustness of the tracking is directly related to this
quantity. As was verified, the tracking robustness decreases
with distance. If a minimum confidence of 95% is sought
for a proper discrimination between the object and the
background, then in our present configuration (and using a
Class-I equivalent laser source) the maximum working dis-
tance is about 166 cm. This is more than enough for the ap-
plication considered.

2.2.2. Depth ResolutionIt is easy to understand that, if
the variance of the measures were constant, as the finger
moves away from the system, the precision of the com-
puted distance would decrease. However, the variance of
the backscattered signal not only varies, but can also grow
large as the finger approaches the system. In fact, for a fixed
confidenceConf of the depth discrimination, the achiev-
able resolution∆(z, Conf) can be precisely computed as
a function of the distance. By using a binarisation thresh-
old computed forIO(z) andIO(z + ∆) and by fixing the
value for the confidence, an equation is obtained that can be
solved for∆(z, Conf). Fig.5 represents the achievable res-
olution for several values ofConf as a function of the dis-
tance (the system can discriminate a point whose depth isz
from a point situated∆(z, Conf) away with a confidence
equal toConf ). We see from the figure that the system has
optimal depth resolution when the finger is placed at a dis-
tance of around 5.5 cm from the mirrors. Two points whose
depths differ by 5.5 mm can be discriminated with 95% con-
fidence, and a finer resolution of 1.7 mm is achieved with
70% confidence. The system can reach sub-millimetric pre-
cision with a lower confidence of 60%.

At 30 cm, the resolution drops to the rather unusable
level of 20 cm (for 95% confidence). Then, if one is seek-
ing a 95% confidence for depth discrimination, only a few
”levels” (in the depth direction) would be available in an op-
erating area limited to 10 or 20 centimeters wide. However,



Figure 5. The achievable resolution for a
given confidence, as a function of the dis-
tance.

a very simple technique can be used to drastically reduce
the variance of the backscattered signal: the unavoidable in-
tensity variations due to the speckle-generating reflection
can be simply averaged by using a slow integrating pho-
todetector, while maintaining the laser active for a slightly
longer duration, even when the mirrors have started mov-
ing towards the new sampling position. Using such a tech-
nique, it should be possible to obtain millimeter-scale depth
resolution up to 10 or 20 cm from the system.

Fig.6 represents a proof of principle experiment demon-
strating the ability of the system to perform 3D tracking of
a finger.
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Figure 6. Experimental result of the 3D track-
ing of a finger.

3. Gesture Recognition

3.1. Gestural Character Recognition with HMMs

The first application of the system is the input of 2D ges-
tural characters in a similar way to what is done using a sty-
lus and the Graffitir method. Six characters from the mod-
ern Latin alphabet were selected (A, B, C, D, E and S, as
shown in Fig.7) in order to evaluate the performance of the
proposed system. The chosen method for recognition was
based on HMMs. Details of HMMs can be found in the lit-
erature [9]. The software used for the GR was HTK [19].

Figure 7. The gestural equivalents of the cho-
sen characters.

In order to recognize gestures with HMMs, the first step
is to build models that characterize the gestures that will
be modelled as a sequence of values for the extracted fea-
tures. Such models are then used for recognizing other ges-
tures. In order to build the models, that is, the HMMs, they
have to be trained by using data similar to the data to be rec-
ognized later. Once a model kind has been chosen (a 5 states
left-right model was chosen), the parameters of the HMMs
are determined by means of this training, which is a pro-
cess of estimation and re-estimation.

To train the HMMs, we have to provide data files that
characterize the gestures. The first step is thus to extract fea-
tures from the gestures. The choice of the extracted features
is important as these features will model the gestures and
are used to train the HMMs. The features must be carefully
chosen in order to obtain an efficient GR system. The choice
of the features depends on some constraints, such as the
kind of features that can be extracted from the raw data and
the invariance desired [1, 5]. In our case, the raw data is the
angles of each mirror. However, since we want the recog-
nition to be as size-invariant as possible (note that in our
case, the recognition with HMMs is translation-invariant
anyway), the angles themselves were not used as features
to characterize gestures. Instead, speed, acceleration and di-
rection were used. A discussion on the choice of these par-
ticular features is provided in [8].

The computation of the three features (speed, accelera-
tion and direction) is done using a sliding window of a given
sizeW that is moved byW sample steps along all sample
data, which are the angles. That is, the speed, acceleration
and direction are computed using a given number of sam-
ples, which is the window size. Raw data is obtained ev-



ery 2 ms which was found to be too short to extract rel-
evant features. This is the main reason why sub-sampling
was performed, features were obtained every 10 ms (that is,
W = 5).

The direction is computed from the slope of the regres-
sion line of all points included in the sliding window for
each of its positions. The slope is then converted to an an-
gle and then to an integer value representing a given angular
sector. Sixteen sectors were used in our case. The speed and
acceleration are computed directly from the position (ob-
tained from the angles), considering that gestures are per-
formed in a plane always roughly at the same distance from
the mirrors. These three features model the gestures and
are used by the recognition software for training and then
recognition.

3.1.1. Explicit Transitions The main problem when us-
ing such a method is that the recognition system has no
clues for determining when the user is performing a charac-
ter and when he is performing a transition gesture between
two characters. The first solution is to model all the pos-
sible transitions and build an extensive database. However,
two problems occur with this approach. First, the number of
possible transitions amongx different characters isx2. This
number quickly becomes huge when considering the whole
modern Latin alphabet, for example. The second problem
is that the more characters to be recognized, the greater the
number of transitions to be modeled. Moreover, similarities
appear between these transitions, which can be extremely
similar to characters, thus leading to a considerable num-
ber of errors.

The second solution is to indicate transitions explicitly,
that is, to tell the system when the user is performing a rel-
evant gesture (a character) and when he is performing an ir-
relevant gesture (a transition between two characters). This
was the chosen solution and the user had to push a button
during the acquisition of a character, and release it when
performing a transition. For convenience, the third dimen-
sion could be used for performing this action. (A small,
quick movement of the finger back and forth could be in-
terpreted as pushing a button or a switch.)

The Fig.8 shows an example of the tracking of the finger
of a user drawing the character B.

3.1.2. ResultsThe results obtained in such conditions
showed several problems. First, only gestural charac-
ters whose first and last points were not at the same po-
sition (that is, all considered characters except D and B,
see Fig.7) could be successfully recognized. Then, there
was some confusion in the recognition of the charac-
ter C. When several C’s were performed in a row, they
looked like several A’s performed in a row, leading to con-
fusion between C’s and A’s. Secondly, the HMM-based
method was unable to distinguish a short pause in-
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Figure 8. Experimental result of the 2D track-
ing of the character B.

side a character gesture from the pause between two ges-
tures. HMM-based methods are dynamic methods which
recognize the evolution of the states of an observa-
tion. If temporal continuity is lost, these methods fail to
perform a valid segmentation. A method to obtain bet-
ter results could be to divide the actual morphemes, that
is whole characters, into smaller morphemes such as seg-
ments or curves.

3.2. Other Recognition Methods

HMMs proved to be well-adapted to hand gestures
recognition [13, 18]. However, in the case of finger ges-
tures, and especially handwritten characters recognition,
other methods appear to be more suited. Instead of recog-
nizing sequences of characters, one can consider recog-
nizing sequences of words. Doing this prevents the user to
perform a special gesture between each character, as sug-
gested before. Each word would be ”written” in the air by
the user with one of his fingers (see Fig.9, top and bot-
tom). Once a word is completed, the following word
would be written roughly at the same position. The move-
ment made by the user from the end of a word to the
beginning of the next one can be recognized by the recogni-
tion system as a ”space” between words (see Fig.9, middle).
The recognition system itself could be extremely simi-
lar to existing handwriting recognition systems (based on
Time Delay Neural Networks [3, 11, 12] or other pat-
tern recognition techniques [4]). The problem of lift-
ing the pen between some letters can be solved by using the
third dimension.

4. Conclusions and Future Work

A system aimed at tracking a finger without the use of
any special device for gestural character input was proposed



−30 −20 −10 0 10 20 30
−30

−20

−10

0

10

20

−20 −15 −10 −5 0 5 10 15 20 25 30
−10

−5

0

5

10

Y
 p

os
iti

on
 (

m
m

)

−20 −15 −10 −5 0 5 10 15 20 25 30 35
−30

−20

−10

0

10

20

X position (mm)

∆T =  10ms
t
0
 = 0 s 

t
1
 = 7 s 

t
1
 = 7 s 

t
2
 = 8 s 

t
3
 = 12 s 

t
2
 = 8 s 

Japan

Tokyo

∆T =  10ms

∆T =  10ms

x 
x 

x 

x 

x 

x 

Figure 9. Experimental result of the 2D
tracking of two handwritten words (”Tokyo
Japan”) with the transition.

and successfully demonstrated. Moreover, it was shown that
3D gesture tracking is possible. Gesture recognition with
the proposed HMM-based method is possible but more suit-
able recognition methods should be considered, performing
recognition either on a character basis or on handwriting
(word) basis.

Further research will be conducted on an efficient inter-
face based on 3D gesture recognition. For example, the use
of the third dimension allows switching between different
modes, such as from character input mode to a mouse-like
mode (where a pointer is moved according to the finger
movement). Alternatively, in drawing application, switch-
ing from a pencil tool to an eraser tool, for example, is possi-
ble. This switching can be done in a similar way to that used
for indicating the explicit transition, as described above. Of
course, the third dimension can be used for more complex
applications that fully make use of this feature of the sys-
tem. One application could be to define a complete 3D al-
phabet in order to allow a more natural and richer interac-
tion language with a machine. Another could be to allow the
user to input 3D shapes or drawings, as shown on Fig.6. For
more specialized applications, the 3D capacity offers users
a natural and powerful way to perform some tasks, such as
controlling the zooming of a map.

A further step is to use gestures along with other modali-
ties, such as speech. Such a multimodal system [2, 6] could
provide a user interface that would combine the complex-
ity and the naturalness of human interaction.
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