Dynamic Augmented Reality X-Ray on Google Glass

Damien Constantine Rompapas^{*}, Nicholas Sorokin[†], Arno in Wolde Lübke[‡], Takafumi Taketomi[§], Goshiro Yamamoto,[¶]Christian Sandor,[∥] and Hirokazu Kato^{**}

Nara Institute of Science and Technology

Figure 1: In our demonstration users A and B are separated by a wall, both wearing a Google Glass. User A views a point of interest, currently only visible to user B ((a) and (b)). User A's view is augmented with video streamed from user B when the target is partially (c) or fully (d) occluded. (Note: (c) and (d) contain simulated augmentations)

Keywords: Augmented Reality, X-Ray visualization, Google Glass

Motivation Over the recent years, research in sophisticated Augmented Reality (AR) X-Ray visualization techniques such as [Dey and Sandor 2014] that permit the user to see through real-world objects have created the possibility for mobile applications to show occluded information in an innovative and intuitive fashion. A popular application is navigation assistance in inner city environments. We think that Google Glass, a hands-free, wearable mobile device, which allows immediate access to web services, is a promising platform for such X-Ray systems.

Demonstration In this demonstration we show an AR X-Ray system that involves two Google Glass users (see Figure 1). One glass is used to stream images and pose data to the other glass, which uses this information for X-Ray visualization. Similar to [Barnum et al. 2009] we use a live camera video feed; however, we enable the streaming user to move freely.

Contribution The system developed by [Sandor et al. 2010] utilizes a static image as source data for the occluded area. [Barnum et al. 2009] use a stationary camera viewing the occluded area to provide a live view. Our system is the first to implement both a live video feed and a moving camera for a view of the occluded area.

Audience The intended audience of our demonstration is anybody

¶goshiro@is.naist.jp

who is interested in AR applications on Google Glass that use innovative visualization techniques. By enabling attendees to experience X-Ray AR we hope to trigger interesting discussions about mainstream applications of this technology.

We will show a virtual reality representation of the scene, as well as a live video feed of the X-Ray view on a separate PC, so spectators can get an immediate understanding of the demonstration.

Future Work Our prototype demonstrates AR X-Ray for near-field occluded points of interest (POI). This function already has many uses when exploring a city. However, in order to additionally explore farther medium- to far-field occluded POIs a contextual aid, akin to Bell et. al's transitional World in Miniature [Bell et al. 2002], is required and we will implement it in future work.

Acknowledgements

This research was partly funded by Christian Sandor's Google Faculty Award.

References

- BARNUM, P., SHEIKH, Y., DATTA, A., AND KANADE, T. 2009. Dynamic seethroughs: Synthesizing hidden views of moving objects. 2013 IEEE International Symposium on Mixed and Augmented Reality (ISMAR) 0, 111–114.
- BELL, B., HLLERER, T., AND FEINER, S. 2002. An annotated situation-awareness aid for augmented reality. In In Proc. ACM UIST 2002 (Symp. on User Interface Software and Technology, 213–216.
- DEY, A., AND SANDOR, C. 2014. Lessons learned: Evaluating visualizations for occluded objects in handheld augmented reality. *International Journal of Human-Computer Studies* 72, 1011, 704 – 716.
- SANDOR, C., CUNNINGHAM, A., DEY, A., AND MATTILA, V.-V. 2010. An augmented reality x-ray system based on visual saliency. In *In Proceedings of IEEE International Symposium* on Mixed and Augmented Reality, 27–36.

^{*}damien.rompapas.dk1@is.naist.jp

[†]nicholas.sorokin.nh6@is.naist.jp

[‡]arno-w@is.naist.jp

[§]takafumi-t@is.naist.jp

christian@sandor.com

^{**}kato@is.naist.jp